Normal variants of Microcephalin and ASPM do not account for brain size variability.
نویسندگان
چکیده
Normal human brain volume is heritable. The genes responsible for variation in brain volume are not known. Microcephalin (MCPH1) and ASPM (abnormal spindle-like microcephaly associated) have been proposed as candidate genes as mutations in both genes are associated with microcephaly, and common variants of each gene are apparently under strong positive selective pressure. In 120 normal subjects, we genotyped these variants and measured brain volumes using magnetic resonance imaging. We found no evidence that the selected alleles were associated with increases or decreases in brain volume. This result suggests that the selective pressure on these genes may be related to subtle neurobiological effects or to their expression outside the brain.
منابع مشابه
Comment on papers by Evans et al. and Mekel-Bobrov et al. on Evidence for Positive Selection of MCPH1 and ASPM.
Evans et al. and Mekel-Bobrov et al. (Reports, 9 September 2005, p. 1717 and 1720, respectively) reported that human genetic variants of Microcephalin (MCPH1) and abnormal spindle-like microcephaly associated (ASPM) are under strong positive selection. We genotyped these variants in 9000 children and find no meaningful associations with brain size and various cognitive measures, which indicates...
متن کاملDeregulation of Microcephalin and ASPM Expression Are Correlated with Epithelial Ovarian Cancer Progression
Mutations in the MCPH1 (Microcephalin) and ASPM (abnormal spindle-like microcephaly associated) genes cause primary microcephaly. Both are centrosomal associated proteins involved in mitosis. Microcephalin plays an important role in DNA damage response and ASPM is required for correct division of proliferative neuro-epithelial cells of the developing brain. Reduced MCPH1 mRNA expression and ASP...
متن کاملThe Derived Allele of ASPM Is Associated with Lexical Tone Perception
The ASPM and MCPH1 genes have been implicated in the adaptive evolution of the human brain [Mekel-Bobrov N. et al., 2005. Ongoing adaptive evolution of ASPM, a brain size determinant in homo sapiens. Science 309; Evans P.D. et al., 2005. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309]. Curiously, experimental attempts have failed to connect th...
متن کاملExpression analysis of the autosomal recessive primary microcephaly genes MCPH1 (microcephalin) and MCPH5 (ASPM, abnormal spindle-like, microcephaly associated) in human malignant gliomas.
Patients with autosomal recessive primary microcephaly have a small but architecturally normal brain containing a reduced number of neurons. Microcephalin and ASPM are two of the genes causing this disease. Both are centrosomal proteins involved in cell cycle regulation. Whereas microcephalin is a component of the DNA damage response and a repressor of telomerase function, ASPM is required for ...
متن کاملComment on "Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens" and "Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans".
Mekel-Bobrov et al. and Evans et al. (Reports, 9 Sept. 2005, p. 1720 and p. 1717, respectively) examined sequence data from modern humans within two gene regions associated with brain development, ASPM and microcephalin, and concluded that selection of these genes must be ongoing. We show that models of human history that include both population growth and spatial structure can generate the obs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 15 12 شماره
صفحات -
تاریخ انتشار 2006